NASA selects mission to study the boundary of the heliosphere: CBK PAN is a part of the winning team!
Our research

CBK PAN will participate in a NASA space mission Interstellar Mapping and Acceleration Probe (IMAP), scheduled for launch in 2024. The selection of the winning proposal submitted in response to the Announcement of Opportunity released in 2017, was announced in Washington DC on June 1, 2018 (https://www.nasa.gov/press-release/nasa-selects-mission-to-study-solar-wind-boundary-of-outer-solar-system).

Read more...
 
Evolution of the solar Lyman-alpha profile line
Our research

Lyman-alpha line is one of the most prominent features in the UV part of the solar spectrum. It allows us to estimate the magnitude of radiation pressure, which is a force that photons from the Sun exert on hydrogen atoms. Radiation pressure is, next to the gravitational force, the main factor that determines the trajectories of neutral hydrogen and deuterium atoms inside the heliosphere.

Read more...
 
SPIE Remote Sensing symposium in Warsaw
News

We cordially invite you to participate in the 2017 SPIE Remote Sensing symposium.  Over the past 23 years SPIE Remote Sensing has become the largest and most prestigious annual international meeting on this subject in Europe.

Last Updated on Tuesday, 31 January 2017 14:53
Read more...
 
Anisotropic Turbulence in the Earth's Magnetosheath
Our research

Turbulence is a complex phenomenon with driving mechanisms still not clearly understood in contemporary science. Turbulence naturally appears in astrophysical plasmas, including the solar wind at planetary and interstellar shocks. The shocks in astrophysical plasmas are usually collisionless due to a very low density of the medium and therefore they differ from those observed in ordinary fluids, because they often result from interaction of nonlinear structures.

Last Updated on Wednesday, 14 February 2018 13:01
Read more...
 
The new concept of sampling device driven by rotary hammering actions
Our research

Sample return space missions are one of the possible options to extend our knowledge about extra-terrestrial materials, processes occurring on surface and subsurface level, as well as interactions between regolith and technology. Collection of surface or subsurface material from such bodies is a key technical process that needs to be performed to achieve the goals of such missions. Although in terrestrial environment the sampling process is relatively easy, smart solutions are needed for zero gravity, unknown and remotely accessible space environment.

Last Updated on Tuesday, 13 September 2016 13:16
Read more...
 
  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  3 
  •  4 
  •  5 
  •  Next 
  •  End 
  • »


Our research

our research

CBK PAN will participate in a NASA space mission Interstellar Mapping and Acceleration Probe (IMAP), scheduled for launch in 2024. The selection of the winning proposal submitted in response to the Announcement of Opportunity released in 2017, was announced in Washington DC on June 1, 2018 (https://www.nasa.gov/press-release/nasa-selects-mission-to-study-solar-wind-boundary-of-outer-solar-system).

Read more...

Interstellar neutral atoms of helium from the local interstellar medium are observed by the Interstellar Boundary Explorer (IBEX) spacecraft in the Earth orbit. Researchers from CBK PAN, together with international collaborators, analyze these observations to determine the Sun’s motion with respect to the local interstellar medium and the temperature of this medium. In a broader perspective, results of these analyses provide important insight into mechanisms of interaction of the heliosphere with its surroundings. In a paper recently published in The Astrophysical Journal they analyzed data from two energy channels of the IBEX-Lo detector previously not used, in addition to the data from the channel used beforehand, and obtained a better assessment of these quantities.

Read more...

Lyman-alpha line is one of the most prominent features in the UV part of the solar spectrum. It allows us to estimate the magnitude of radiation pressure, which is a force that photons from the Sun exert on hydrogen atoms. Radiation pressure is, next to the gravitational force, the main factor that determines the trajectories of neutral hydrogen and deuterium atoms inside the heliosphere.

Read more...

Turbulence is a complex phenomenon with driving mechanisms still not clearly understood in contemporary science. Turbulence naturally appears in astrophysical plasmas, including the solar wind at planetary and interstellar shocks. The shocks in astrophysical plasmas are usually collisionless due to a very low density of the medium and therefore they differ from those observed in ordinary fluids, because they often result from interaction of nonlinear structures.

Read more...

Visit us at:

Banner
Start
We have 16 guests online
Joomla! jest wolnym oprogramowaniem dostepnym na licencji GNU GPL